Search results for "Minimal positive solution"

showing 2 items of 2 documents

Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential

2020

AbstractWe consider a parametric nonlinear Robin problem driven by the negativep-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation$$f(z,\cdot )$$f(z,·)is$$(p-1)$$(p-1)-sublinear and then the case where it is$$(p-1)$$(p-1)-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter$$\lambda \in {\mathbb {R}}$$λ∈Rwhich we specify exactly in terms of principal eigenvalue of the differential operator.

Pure mathematicsSublinear functionPerturbation (astronomy)Sublinear and superlinear perturbationLambda01 natural sciencesNonlinear Picone’s identitySettore MAT/05 - Analisi MatematicaUniqueness0101 mathematicsMathematical PhysicsEigenvalues and eigenvectorsPositive solutionsMathematicsNonlinear regularityAlgebra and Number TheoryMinimal positive solution010102 general mathematicsDifferential operator010101 applied mathematicsNonlinear systemp-LaplacianIndefinite potentialUniquenessNonlinear maximum principleAnalysis
researchProduct

On a Robin (p,q)-equation with a logistic reaction

2019

We consider a nonlinear nonhomogeneous Robin equation driven by the sum of a \(p\)-Laplacian and of a \(q\)-Laplacian (\((p,q)\)-equation) plus an indefinite potential term and a parametric reaction of logistic type (superdiffusive case). We prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter \(\lambda \gt 0\) varies. Also, we show that for every admissible parameter \(\lambda \gt 0\), the problem admits a smallest positive solution.

local minimizersminimal positive solutionsPure mathematicspositive solutionsGeneral MathematicsType (model theory)Lambda01 natural sciencesPositive solutionSet (abstract data type)Maximum principlesuperdiffusive reactionSettore MAT/05 - Analisi Matematicaindefinite potential0101 mathematicsParametric statisticsMathematicsMinimal positive solutionrobin boundary conditionlcsh:T57-57.97010102 general mathematicsRobin boundary conditionTerm (time)010101 applied mathematicsNonlinear systemmaximum principlelcsh:Applied mathematics. Quantitative methodsLocal minimizerOpuscula Mathematica
researchProduct